227 lines
8.8 KiB
C#

using Assimp;
using OpenTK.Graphics.OpenGL4;
using OpenTK.Windowing.Common;
using OpenTK.Windowing.GraphicsLibraryFramework;
using OpenTK.Windowing.Desktop;
using LearnOpenTK.Common;
using OpenTK.Mathematics;
using TheLabs.Shapes;
namespace TheLabs
{
public class MyExampleWindow : GameWindow
{
// Create the vertices for our triangle. These are listed in normalized device coordinates (NDC)
// In NDC, (0, 0) is the center of the screen.
// Negative X coordinates move to the left, positive X move to the right.
// Negative Y coordinates move to the bottom, positive Y move to the top.
// OpenGL only supports rendering in 3D, so to create a flat triangle, the Z coordinate will be kept as 0.
private SceneNode _rootNode;
private SceneNode _characterNode;
private SceneNode _buildingNode;
private Shader _shader;
private Camera _camera;
// - Resources that only need to be created once
private Mesh _exampleObject;
private Mesh _buildingObject;
private Texture _texture;
private RenderObject _render;
private RenderObject _buildingRender;
float _rotation = 0.0f;
// -- Scene Objects
private Vector3 _cameraPosition = new Vector3(0.0f, 0.0f, -3.0f);
private Vector3 _cameraFront = new Vector3(0.0f, 0.0f, -1.0f);
private Vector3 _cameraUp = Vector3.UnitY;
private float _yaw = -90.0f;
private float _pitch = 0.0f;
private float _cameraSpeed = 2.5f;
private float _rotationSpeed = 50.0f;
private float _mouseSensitivity = 0.1f;
// This prevents a large camera jump when the window first gets focus
private bool _firstMove = true;
public MyExampleWindow(GameWindowSettings gameWindowSettings, NativeWindowSettings nativeWindowSettings)
: base(gameWindowSettings, nativeWindowSettings)
{
}
// Now, we start initializing OpenGL.
protected override void OnLoad()
{
// This is called when the window is created and is where we can set up OpenGL resources.
base.OnLoad();
//GL.Disable(EnableCap.CullFace);
//GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Line);
GL.ClearColor(0.2f, 0.3f, 0.3f, 1.0f);
GL.Enable(EnableCap.DepthTest);
_camera = new Camera(_cameraPosition, _cameraFront, _cameraUp);
_shader = new Shader("Shaders/shader.vert", "Shaders/shader.frag");
_texture = new Texture("Textures/texture-a.png");
_rootNode = new SceneNode();
_exampleObject = ModelLoader.LoadMesh("Objects/cat.obj");
_buildingObject = ModelLoader.LoadMesh("Objects/building1.obj");
_render = new RenderObject(_exampleObject, _shader, _texture);
_buildingRender = new RenderObject(_buildingObject, _shader, _texture);
_characterNode = new SceneNode(_render);
_characterNode.Position = new Vector3(0.0f, -1.0f, 0.0f);
_rootNode.AddChild(_characterNode);
_buildingNode = new SceneNode(_buildingRender);
_buildingNode.Position = new Vector3(2.0f, -1.0f, 0.0f);
_rootNode.AddChild(_buildingNode);
CursorState = CursorState.Grabbed;
}
// Now that initialization is done, let's create our render loop.
protected override void OnRenderFrame(FrameEventArgs e)
{
// This is called once per frame and is where all the rendering code goes.
base.OnRenderFrame(e);
// Clear the color buffer and the depth buffer
GL.Clear(ClearBufferMask.DepthBufferBit | ClearBufferMask.ColorBufferBit);
//_cubeObject.Rotation = Quaternion.FromEulerAngles(_rotation * 0.5f, _rotation, 0); //
//_cubeObject2.Rotation = Quaternion.FromEulerAngles(-_rotation * 0.5f, -_rotation, 0);
// --- Set up Camera ---
Matrix4 view = _camera.LookAt();
float aspectRatio = (float)Size.X / Size.Y;
// 2. Add a safety check for divide-by-zero
if (Size.Y == 0 || Size.X == 0)
{
aspectRatio = 1.0f; // Default to 1:1 if window is minimized
}
Matrix4 projection = Matrix4.CreatePerspectiveFieldOfView(
MathHelper.DegreesToRadians(45f),
aspectRatio,
0.1f,
100.0f
);
// --- Draw Scene Objects ---
_rootNode.Draw(view, projection, Matrix4.Identity);
SwapBuffers();
}
protected override void OnUpdateFrame(FrameEventArgs e)
{
base.OnUpdateFrame(e);
_rotation += (float)e.Time;
var input = KeyboardState;
if (input.IsKeyDown(Keys.Escape))
{
Close();
}
if (!IsFocused)
{
_firstMove = true;
return;
}
var mouuse = MouseState;
if (_firstMove)
{
mouuse = MouseState;
_firstMove = false;
}
else
{
// Get the mouse's movement delta
float deltaX = mouuse.Delta.X;
float deltaY = mouuse.Delta.Y;
// Apply sensitivity
_yaw += deltaX * _mouseSensitivity;
_pitch -= deltaY * _mouseSensitivity; // Y-axis is inverted
}
// --- Rotation (Arrow Keys) ---
if (input.IsKeyDown(Keys.Left))
{
_yaw -= _rotationSpeed * (float)e.Time;
}
if (input.IsKeyDown(Keys.Right))
{
_yaw += _rotationSpeed * (float)e.Time;
}
if (input.IsKeyDown(Keys.Up))
{
_pitch += _rotationSpeed * (float)e.Time;
}
if (input.IsKeyDown(Keys.Down))
{
_pitch -= _rotationSpeed * (float)e.Time;
}
_pitch = MathHelper.Clamp(_pitch, -89.0f, 89.0f);
Vector3 front;
_camera._target.X = MathF.Cos(MathHelper.DegreesToRadians(_yaw)) * MathF.Cos(MathHelper.DegreesToRadians(_pitch));
_camera._target.Y = MathF.Sin(MathHelper.DegreesToRadians(_pitch));
_camera._target.Z = MathF.Sin(MathHelper.DegreesToRadians(_yaw)) * MathF.Cos(MathHelper.DegreesToRadians(_pitch));
_cameraFront = Vector3.Normalize(_camera._target);
var _cameraRight = Vector3.Normalize(Vector3.Cross(_cameraFront, _camera._up));
if (input.IsKeyDown(Keys.W)) _camera._position += _cameraFront * _cameraSpeed * (float)e.Time;
if (input.IsKeyDown(Keys.S)) _camera._position -= _cameraFront * _cameraSpeed * (float)e.Time;
if (input.IsKeyDown(Keys.A)) _camera._position -= _cameraRight * _cameraSpeed * (float)e.Time;
if (input.IsKeyDown(Keys.D)) _camera._position += _cameraRight * _cameraSpeed * (float)e.Time;
}
protected override void OnResize(ResizeEventArgs e)
{
base.OnResize(e);
// When the window gets resized, we have to call GL.Viewport to resize OpenGL's viewport to match the new size.
// If we don't, the NDC will no longer be correct.
GL.Viewport(0, 0, Size.X, Size.Y);
}
// Now, for cleanup.
// You should generally not do cleanup of opengl resources when exiting an application,
// as that is handled by the driver and operating system when the application exits.
//
// There are reasons to delete opengl resources, but exiting the application is not one of them.
// This is provided here as a reference on how resource cleanup is done in opengl, but
// should not be done when exiting the application.
//
// Places where cleanup is appropriate would be: to delete textures that are no
// longer used for whatever reason (e.g. a new scene is loaded that doesn't use a texture).
// This would free up video ram (VRAM) that can be used for new textures.
//
// The coming chapters will not have this code.
protected override void OnUnload()
{
// Unbind all the resources by binding the targets to 0/null.
GL.BindBuffer(BufferTarget.ArrayBuffer, 0);
GL.BindVertexArray(0);
GL.UseProgram(0);
GL.DeleteProgram(_shader.Handle);
base.OnUnload();
}
}
}